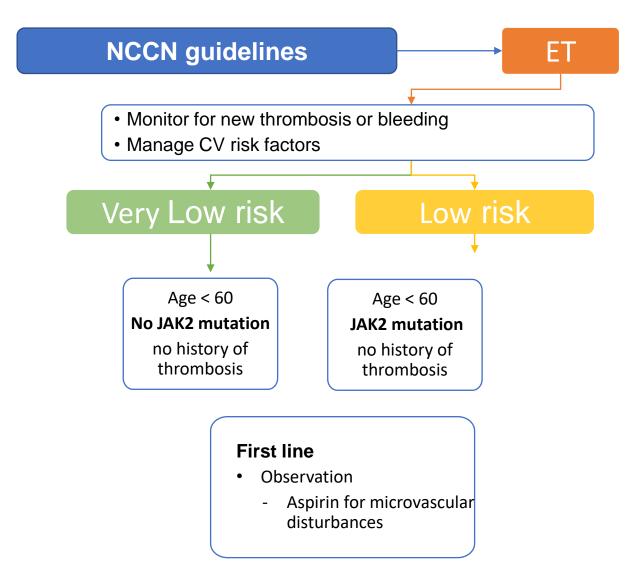
What is new in the treatment of MPNs in 2022

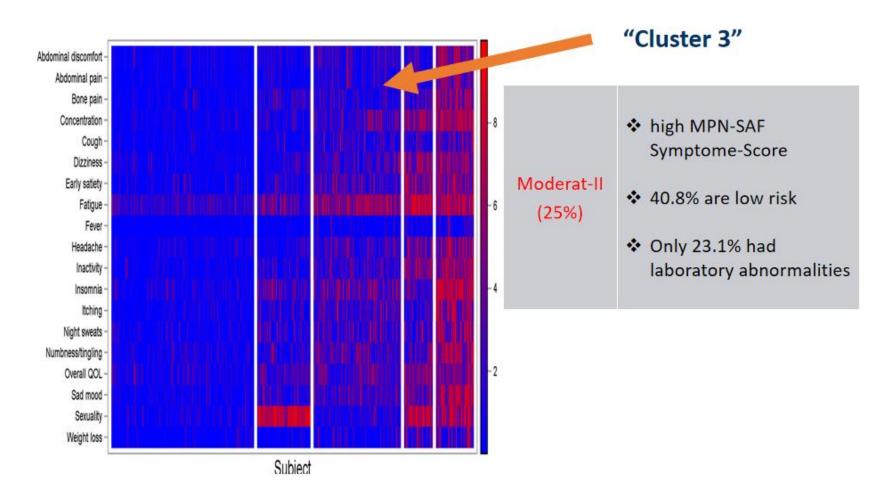
Haifa Kathrin Al-Ali Halle (Saale)

Germany



Disclosure

Research support from Novartis, Bristol Myers Squibb and Incyte,
consulting for Novartis and Bristol Myers Squibb,
participating on a scientific advisory board for Novartis, Bristol Myers Squibb, Abbvie and Blue
Print,
travel grant from Novartis, Bristol Myers Squibb and Abbvie


ET

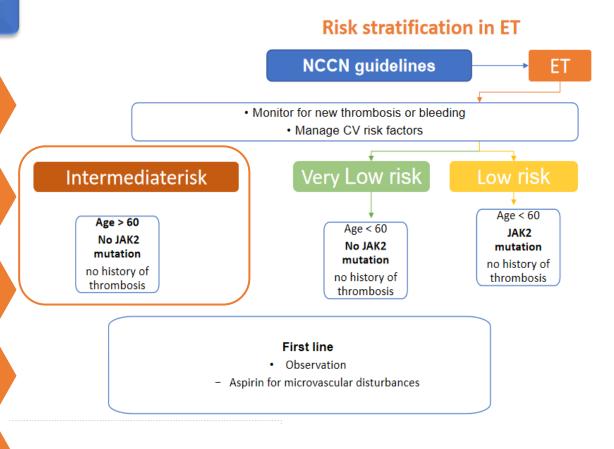
Risk stratification in ET

NCCN guidelines 2022

Is it possible to have severe symptomes in low risk ET?

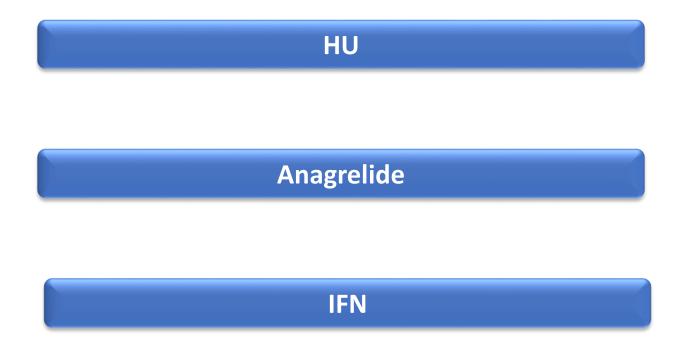
Should every patient above 60 years with ET automatically receive cytoreductive therapy?

Indications for cytoreductive therapy


High risk (History of thrombosis at any age; Age > 60 & JAK2 mutation)

Thrombosis; Bleeding; aquired VWD

Splenomegaly and/or constitutional symptomes


Progressive thrombocytosis and/or leukocytosis

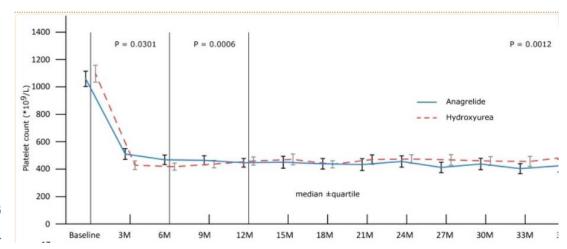
Microvascular symptomes not responsive to aspirin

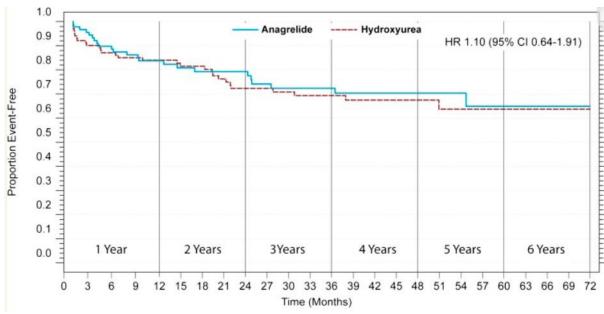
NCCN guidelines 2022

Cytoreductive therapy in ET

Is an agrelide also effictive in patients with thrombosis?

Blood. 2013 Mar 7; 121(10): 1720–1728.


Prepublished online 2013 Jan 11. doi: 10.1182/blood-2012-07-443770

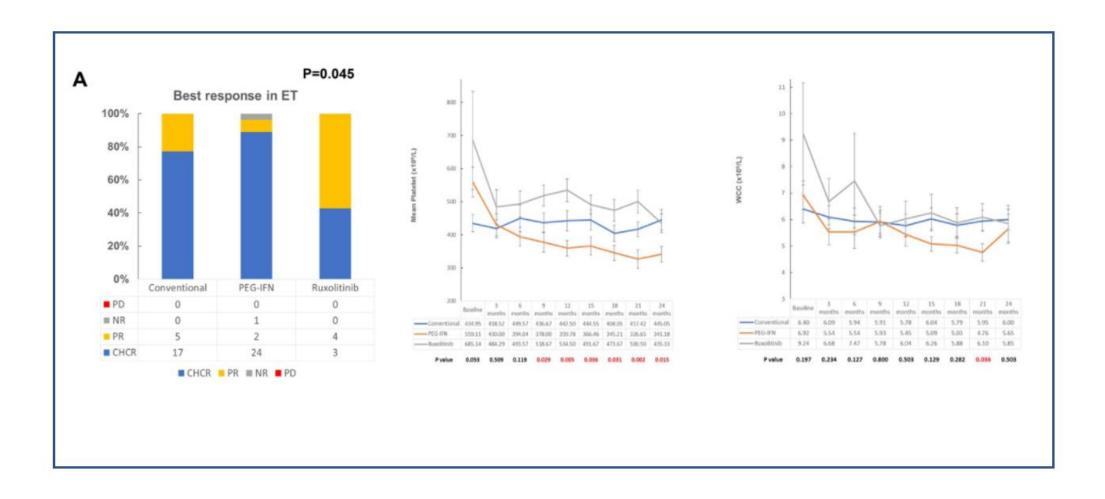

PMCID: PMC3591796

PMID: <u>23315161</u>

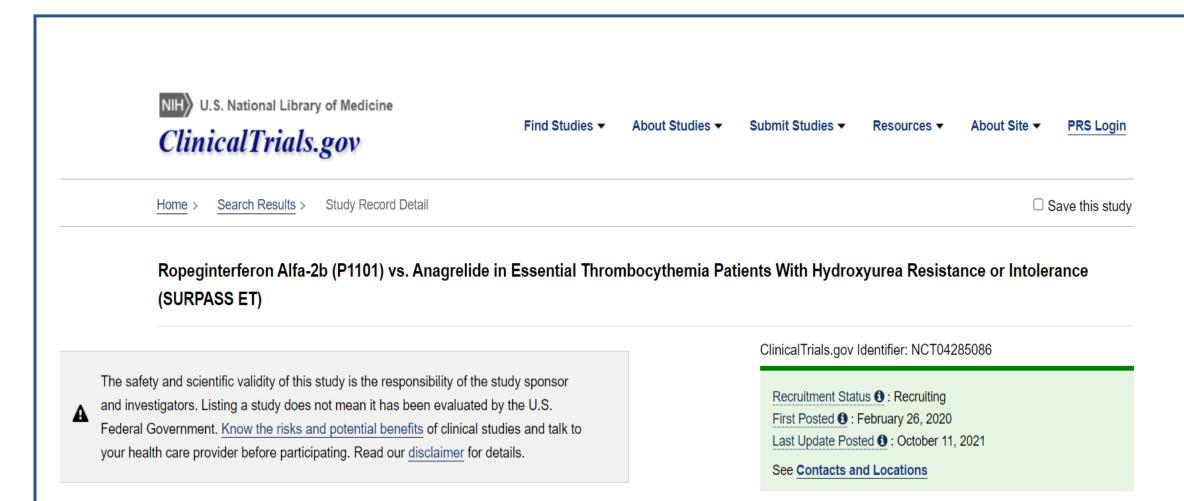
Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial

Heinz Gisslinger, ¹ Mirjana Gotic, ² Jerzy Holowiecki, ³ Miroslav Penka, ⁴ Juergen Thiele, ⁵ Hans-Michael Kvasnicka, ⁶ Robert Kralovics, ^{1,7} and Petro E. Petrides ⁸, for all members of the ANAHYDRET Study Group

What are the data to IFN in ET?


> Cancer Chemother Pharmacol. 2003 Jan;51(1):81-6. doi: 10.1007/s00280-002-0533-4. Epub 2002 Nov 21.

Pilot study of pegylated interferon-alpha 2b in patients with essential thrombocythemia


> Hematology. 2020 Dec;25(1):247-257. doi: 10.1080/16078454.2020.1780755.

Myeloproliferative neoplasms treated with hydroxyurea, pegylated interferon alpha-2A or ruxolitinib: clinicohematologic responses, quality-of-life changes and safety in the real-world setting

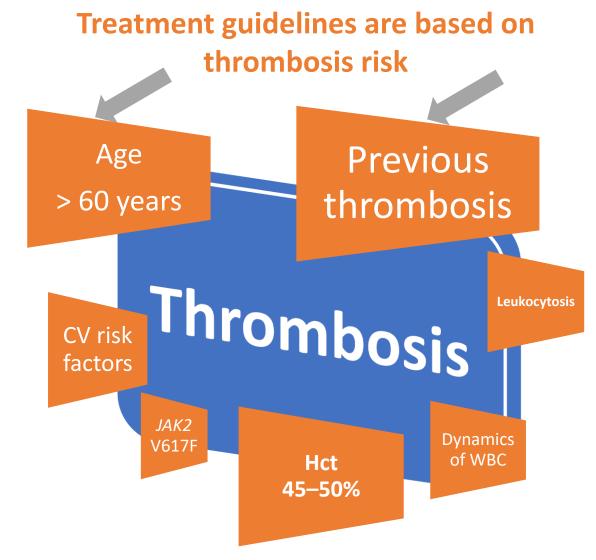
What are the data to IFN in ET?

IFN versus Anagelide in ET

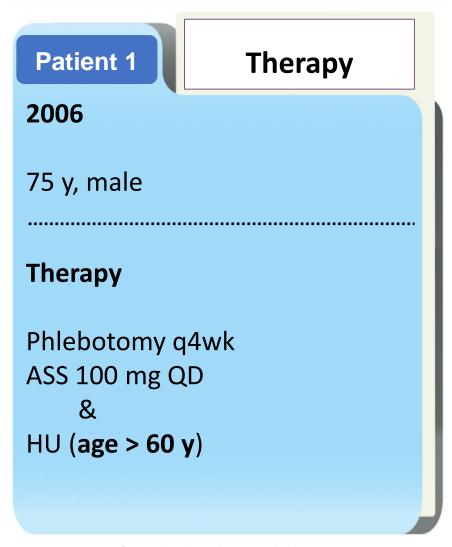
Patient 1

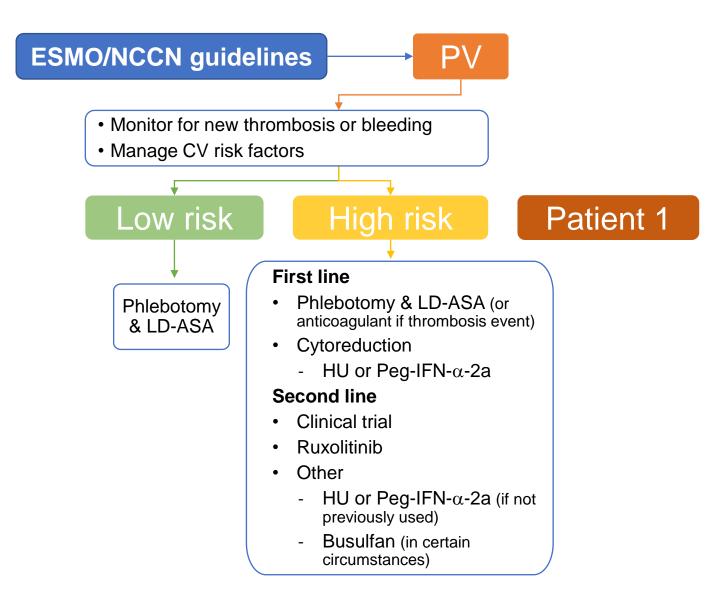
April 2006

70 y, male Fatigue **Splenomegaly** 6 cm BCM

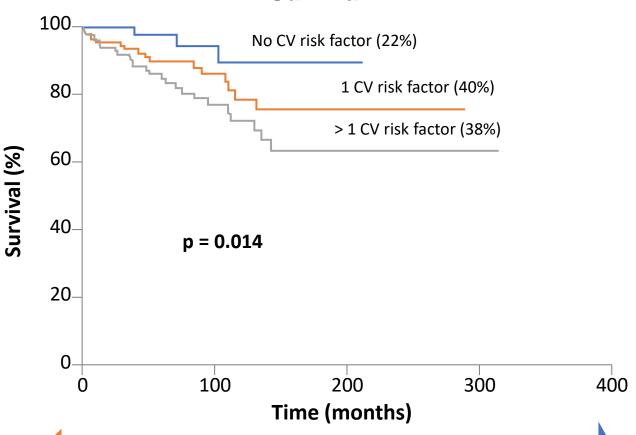

WBC 12.6 × 10⁹/L
Differential normal

Hb **21.3** g/dL


Hct **62.5**%


PLT 591 \times 10⁹/L

JAK2 V617F-positive PV


How should I treat this patient?

Cardiovascular risk factors affect survival and thrombotic events in patients with polycythemia vera

Survival

CV risk factors in 165 PV patients

CV risk factor	n (%)
Smoke	25 (15.0)
Hypertension	105 (63.8)
Obesity	12 (7.5)
Dyslipidemia	47 (28.8)
Diabetes	28 (16.9)

The number of CV risk factors negatively correlates with survival

gure adapted from Accurso V, et al. Mediterr J Hematol Infect Dis. 2020;12:e2020008. © 2020 Accurso et al. http://creativecommons.org/licenses/by/4.0/, minor changes

Has the patient developed HU resistance?

Patient 1

Therapy

75 y, male **2006–2011**

ASS 100 mg QD

Phlebotomy q4wk

HU (age > 60 y)

2011

Headache; pruritus; fatigue

WBC 15.8 \times 10⁹/L

Hb 13.7 g/dL

Hct 44%

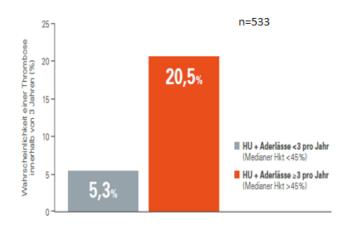
PLT $454 \times 10^9/L$

HU resistance (modified ELN criteria)

HU resistance

HU resistance (modified ELN criteria)⁵

Thrombosis or bleeding


	Known Hl	J treatment	Known Phlebotomy treatment						
Thrombotic events in	N=1	L306	N=1314						
PV patients, (%) 1	YES	NO	YES	NO					
	24.7	24.8	21.8	27.7					

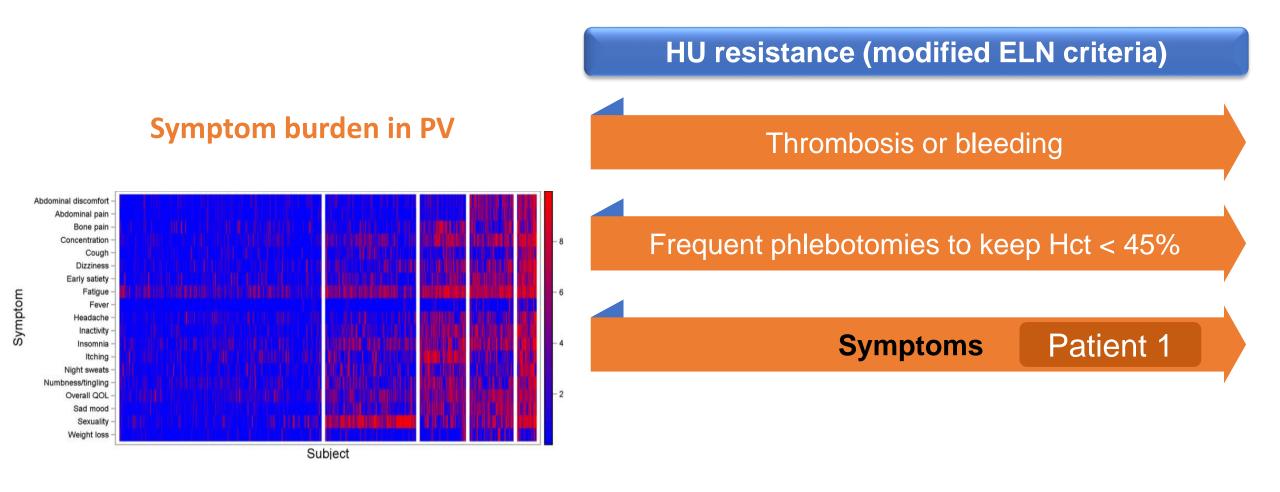
Recurrent thrombosis per 100 pt-years in MPN is 5.3 among patients on long-term vitamin K antagonists and 12.8 after discontinuation (P=0.008)

Geyer H, et al. JCO 2016; De Stefano V, et al. Leukemia 2016.

HU resistance

3 years probability of thrombosis within 3 years under HU + phlebotomy

Frequent phlebotomies under HU reflect a badly controlled Hct and may indicate an aggressive biology.

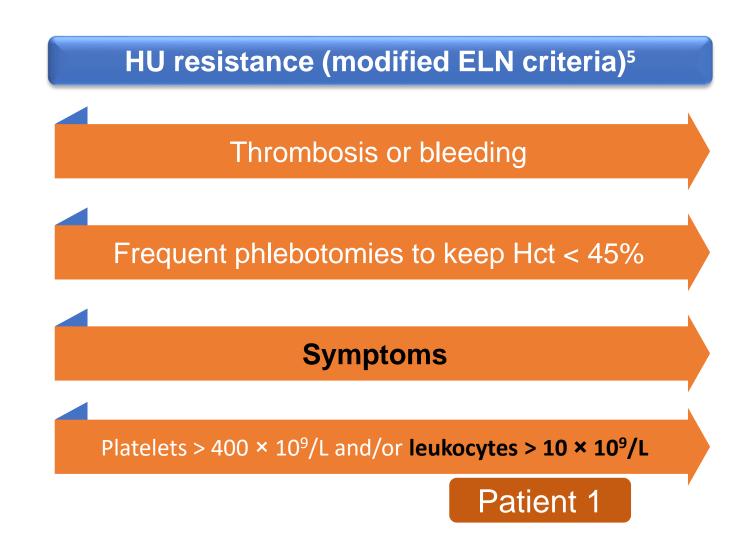

Alvarez Larran A, et al. Haematologica 2017.

HU resistance (modified ELN criteria)⁵

Thrombosis or bleeding

Frequent phlebotomies to keep Hct < 45%

Has the patient developed HU resistance?

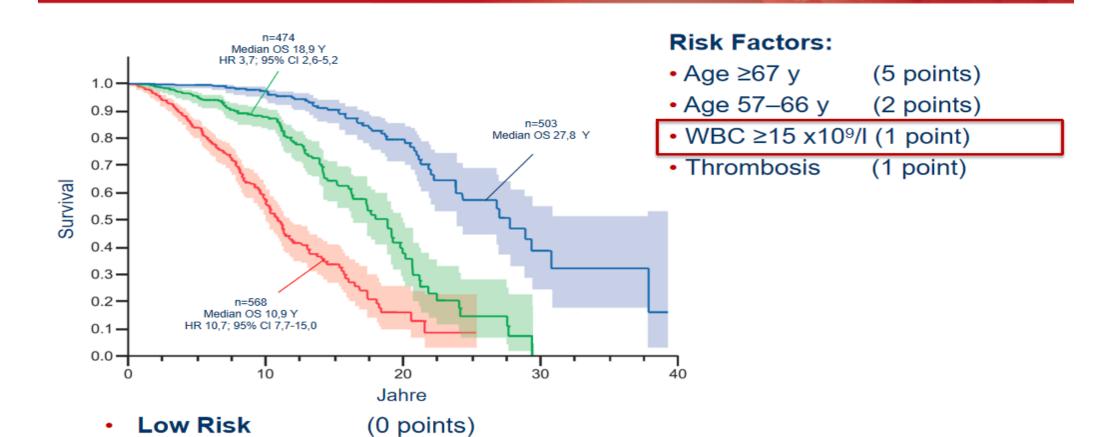


Has the patient developed HU resistance?

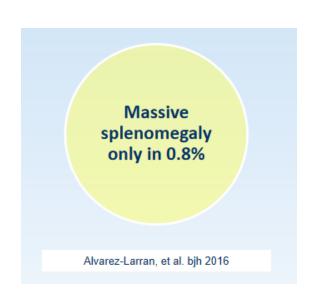
ECLAP Study

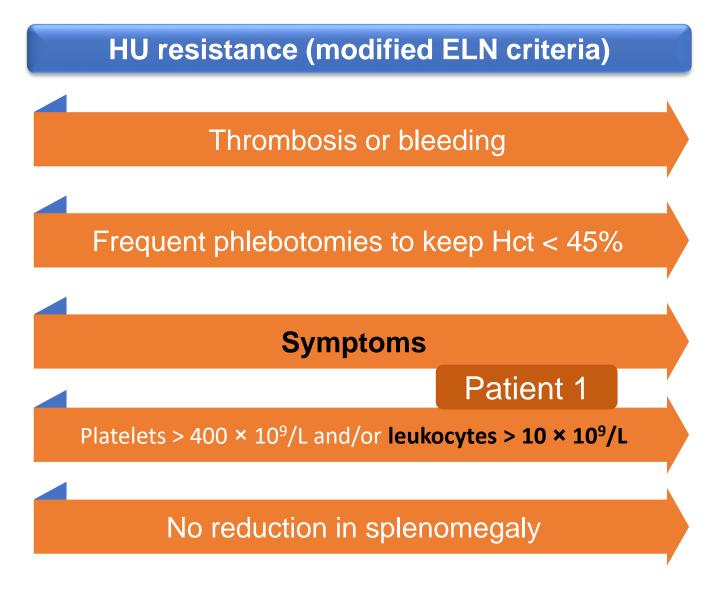
WBC, × 10 ⁹ /L	HR (95% CI)	p value
≤ 10 (n = 990)	1	
10.1–15 (n = 365)	1.06 (0.7–1.6)	0.80
> 15 (n = 241)	1.71 (1.1–2.6)	0.02

Platelet count is not a risk factor for thrombosis, but for bleeding!

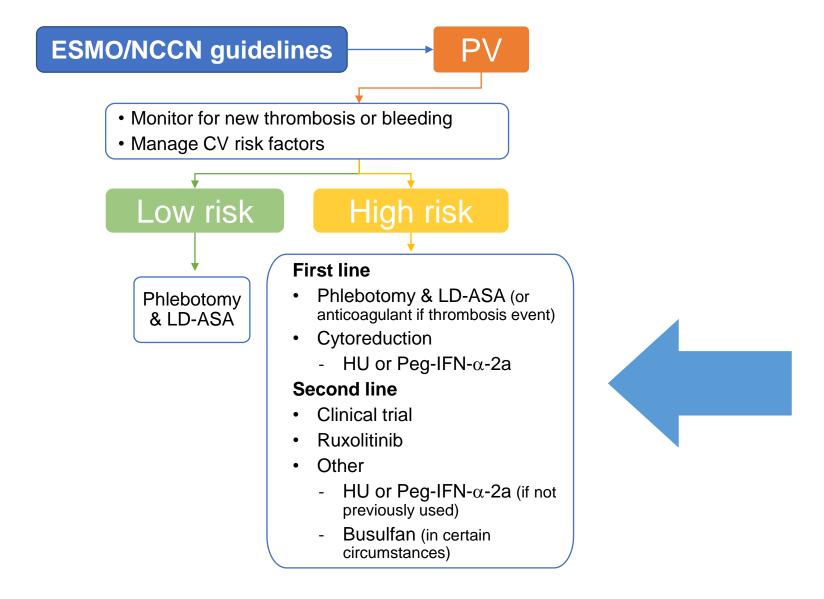


Survival in PV is not related to Hb

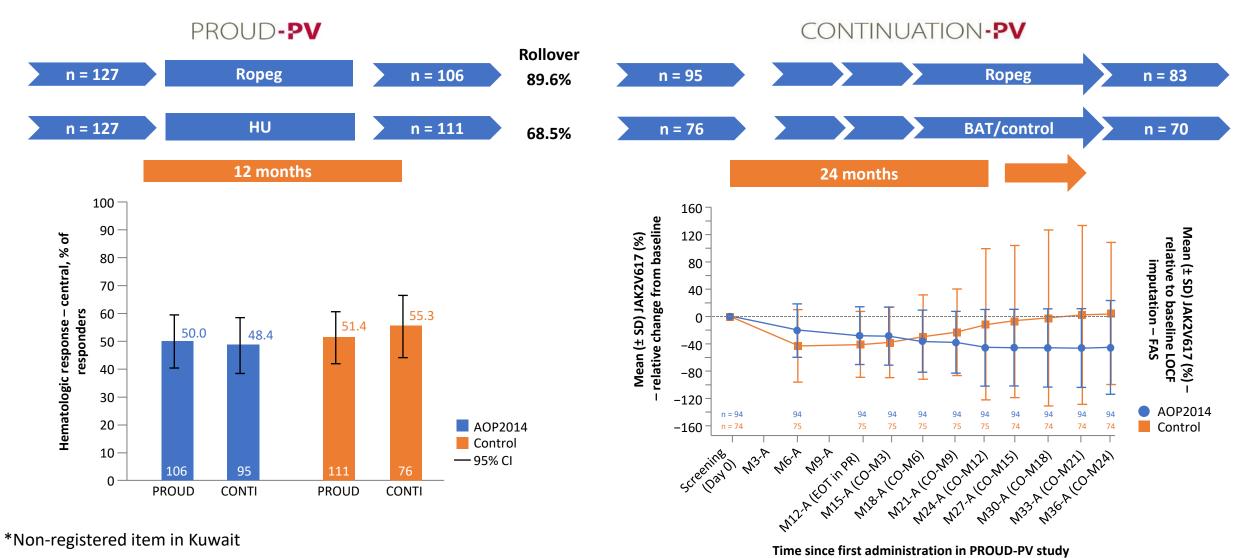

Intermediate Risk (1 - 2 points)


(≥3 Punkte)

High Risk



Has the patient developed HU resistance?



What alternatives are available for patient 1?

A) Interferon (ropeginterferon alfa-2b)

BAT, best available therapy; CONTI, CONTINUATION; FAS, full analysis set; LOCF, last observation carried forward; ropeg, ropeginterferon alfa-2b; SD, standard deviation.

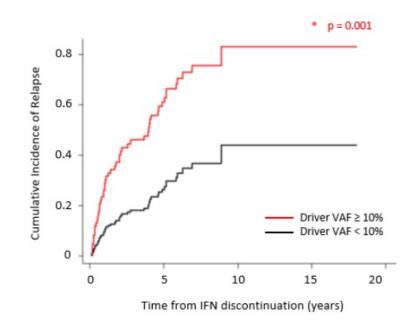
Gisslinger H, et al. Presentation at ASH 2018. Blood. 2018;132 Suppl 1: abstract 579.

A) Interferon (ropeginterferon alfa-2b)

FINAL RESULTS FROM THE PROUD-PV/CONTINUATION-PV

STUDIES

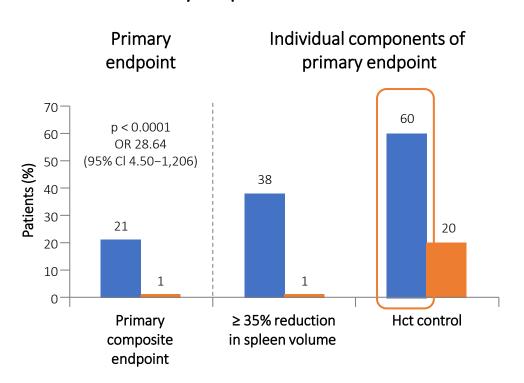
										1	rin	ne	si	nc	e f	irs	tac	dm	ini	str	atio	on	in	PR	ou	D-	PV	[m	on	th]						
				0		1	6		12		1	-		24		30		36		42		48		54		60		66		72		78		84		90
pegl	IFN		L	95	9	4 (1	94	93	9	\$	8 8	\$	86	85	85	83	82	80	79	75	74	74	73	70	68	68	68	68	65	50	39	24	11	1	0
Con			l	74		4 1	74	74	74	7.	17	4 7	3	70	70	69	68	67	67	66	65	64	62	60	59	58	56	55	55	52	42	31	21	11	5	0
	0.0	-																															• 0	en	so	red
	0.2																																			
	0.4	-																																		
	0.6																													۲	-0	.0	•			
	8.0		1																											n	=0	.0.	4			•
																	-	-	-	7	_	+,	-		+	-	+	+		-		+1	***	-	+	
	1.0		1		_	_		•		-	++	7	*	١.	+		+	-++	+	4	+	4														


6th year of treatment	Ropeginterferon N=95	HU N=74
No phlebotomies (p=0.005)	81.4%	60.0%
JAK2V617F allele burden <1% (p=0.0001).	19/92 (20.7%)	1/70 (1.4%)
PV risk events reported (p=0.04)	5/95 (5.3%)	12/74 (16.2%)

Is TFR possible after IFN in Patients with Complete hematologic Remission (CHR)?

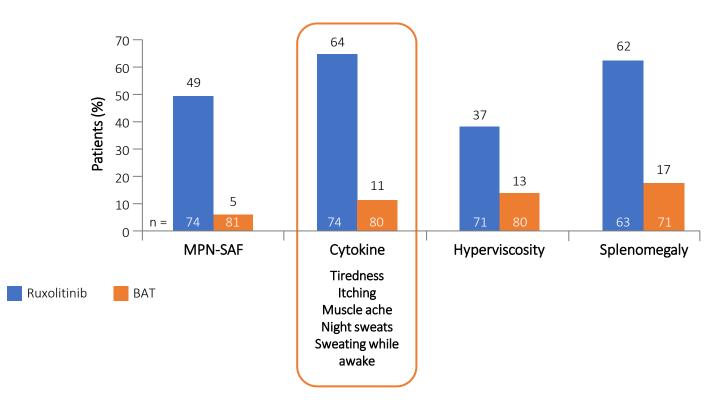
Median follow-up 72.4 months

Therapy IFN	N/ %
Yes (131)	131
No	250
Reasons for disc	continuation
Toxicity	50%
CHR	29.9%
Failure	6.3%
Others	11.8%

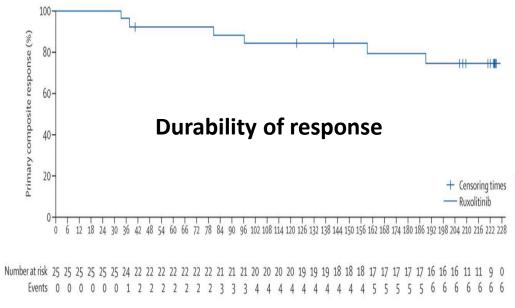

Long CHR (p=0.024) & VAF < 10% (p=0.004) are associated with a higher probability of TFR

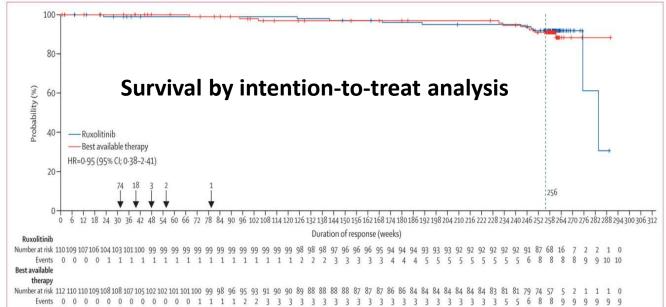
^{* 61} Patients needed a restart of therapy; 2. CHR: 83.6%

B) Ruxolitinib


Primary response at Week 32

77% of patients randomized to ruxolitinib met at least 1 component of the primary endpoint




Symptom assessment at Week 32

B) Ruxolitinib

5-year follow up of ruxolitinib versus best available therapy in PV (RESPONSE)

What about the tolerability of available drugs?

HU

Cytopenia at the lowest dose of HU for a response of **1.7%**

Unacceptable non-hematologic
AEs 9% (leg ulcers [6%], mucocutaneous
[3%])

"Manageable" toxicity 8% (mucocutaneous [4.4%], digestive [1.6%])

NMSC risk is increased by 20% in ET and PV

IFN-α

AEs are well known

(Flu-like symptoms, fatigue, neuropsychiatric symptoms, thyroiditis)

25–40% of patients with PV and 20– 50% of patients with ET discontinued within 1–2 years due to AEs

Ruxolitinib

Anemia 8.9%

All infections 18.9%

(Herpes zoster 4.7%)

NMSC 5.1%

(428.4 patient-years)

	Ruxol	itinib	ВА	т	Crossover		
Prior history of NMSC	No n = 97	Yes n = 13	No n = 105	Yes n = 6	No n = 92	Yes n = 6	
Patient-years of exposure	385.3	43.0	70.1	3.5	307.5	22.4	
Total NMSC events ^a	14	8	1	1	6	3	
Rate per 100 patient-years of exposure	3.6	18.6	1.4	28.5	2.0	13.4	

PTG-300 (rusfertide)

Injectable hepcidin mimetic which traps iron within macrophages via ferroportin inhibition

PTG-300-04 study: PV diagnosis & ≥3 phlebotomies with/without concurrent cytoreductive therapy in the 24 weeks before enrollment.

		■ 84% of patients did not require a phlebotomy, 14% required one,
Characteristic	N = 63	and 2% required two
Age, mean (range)	56.3 (27–76)	iron stores were normalized [increase in serum ferritin levels by
Male, %	71.4	Week 4 (p < 0.01)]
Risk, %		reduction in MPN-TSS from baseline to Week 28 (16.3 vs 11.4).
Low	44.4	Symptomatic reductions were most marked in the level of fatigue,
High	55.6	and problems with concentration ($p = 0.04$)
Therapy, %		\Box increase in platelet count (p < 0.01) by Week 4, which persisted
TP only	49.2	until Week 28 (the increase did not exceed 20% in platelet
TP + cytoreductive therapy	50.8	numbers)
Number of phlebotomies 28 weeks prior, %		
2–3	23.8	During the brief clinical hold (FDA; NMSC), all patients had
4–5	52.3	significant (p<0.01) increase in TPs, HCT, and RBC count; and
≥6	23.8	reported increase in PV-related symptoms.
Days between phlebotomies, median	35	

Conclusions to PV

PV is more than Hb and Hct!

The patient

Age
Comorbidities
Psychological &
social aspects
etc...

The disease (PV)

Clinical & laboratory data RDW

The treating physician

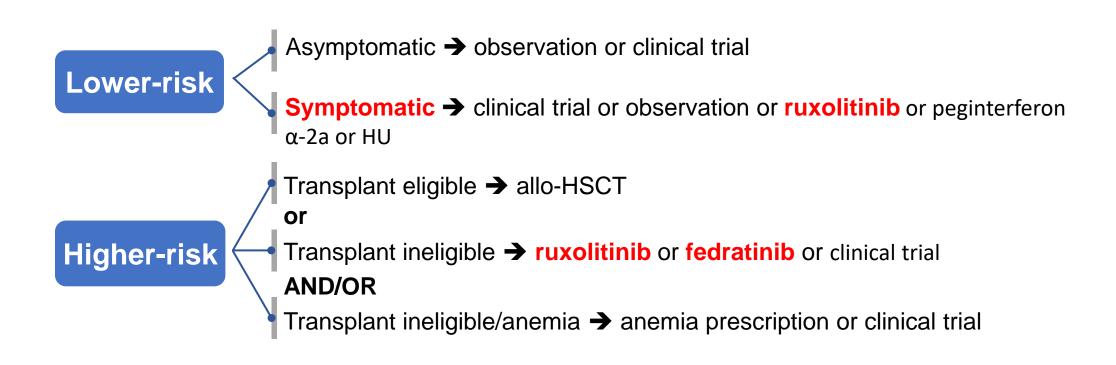
Optimal outcome

The treatment

Efficacy & safety

MF JAK2 Inhibitors (JAKi) in MPN

JAKi revolutionized the therapeutic landscape of MPN - particularly for patients with myelofibrosis (MF) with their efficacy in controlling disease-related symptoms and splenomegaly

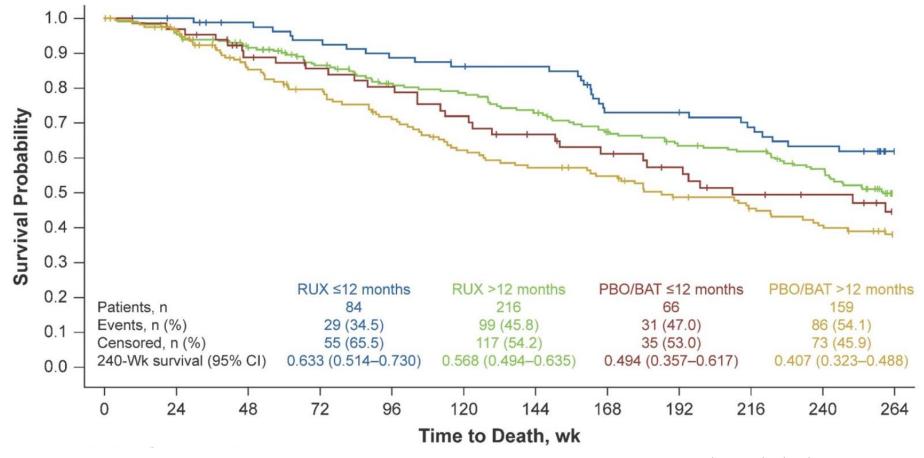

Agent	JAK family target	Non-JAK target	Approved	Current/ future indication
Ruxolitinib	JAK1/2	TYK2, JAK3	Yes	1st-line MF; 2nd-line PV
Fedratinib	JAK2	FLT3	Yes (FDA/EMA)	1st- and 2nd-line MF
Momelotinib	JAK1/2	JNK1, CDk2, ACVR1/ALK2*	No	2nd-line MF
Pacritinib	JAK2	FLT3, CSF1R, IRAK1, TNK1, and ROS1**	No	2nd-line MF

^{*} activin A receptor type 1 is a bone morphogenic protein receptor (BMPR) kinase that regulates hepcidin expression (Asshoff M, et al. Blood 2017.)

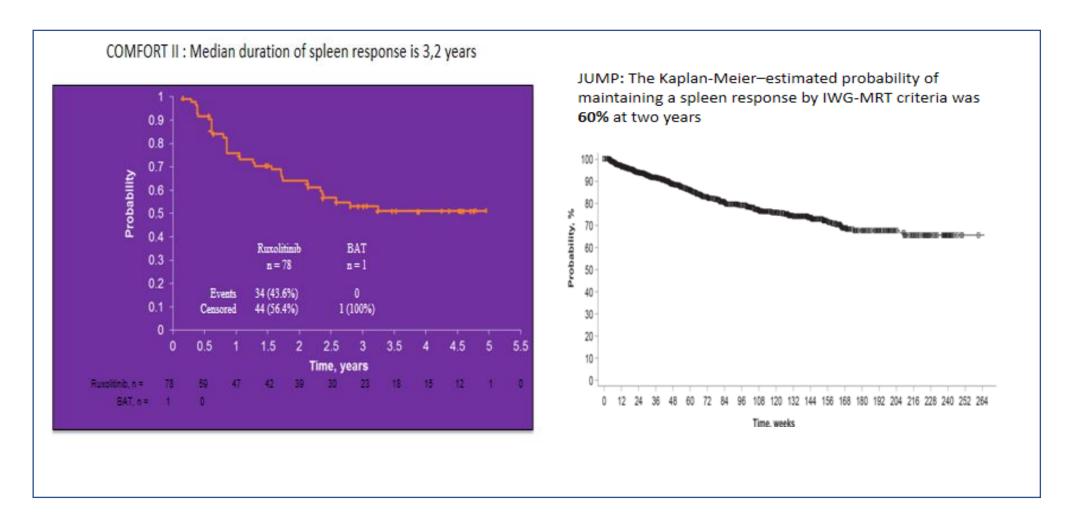
^{**} This accounts for potent anti-proliferative effects and limited myelo- and immunosuppressive activities (Singer JW, et al. C J Exp Pharmacol. 2016.)

Treatment in Myelofibrosis

NCCN guidelines for treatment of MF


Lower-risk: MIPSS-70 \leq 3; DIPSS-Plus \leq 1; DIPSS \leq 2

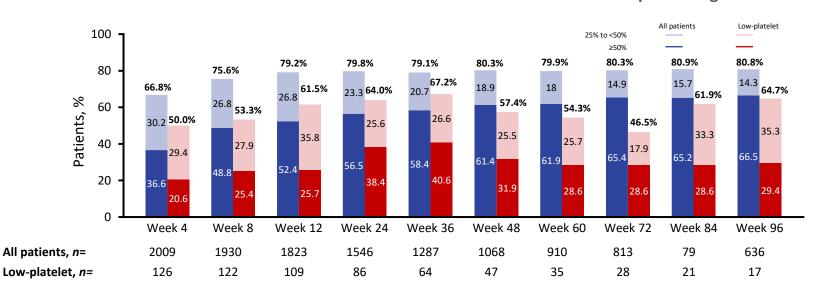
Higher-risk: MIPSS-70 ≥ 4; DIPSS-Plus > 1; DIPSS > 2


Long-term Survival Data under Ruxolitinib

Early Intervention & Impact on outcomes. A Pooled Analysis of the Comfort I and II Studies

Figure. OS of Patients with MF Stratified by Disease Duration before RUX Initiation

A) Loss of Response to Ruxolitinib


B) Ruxolitinib-related thrombocytopenia and dosedependent response

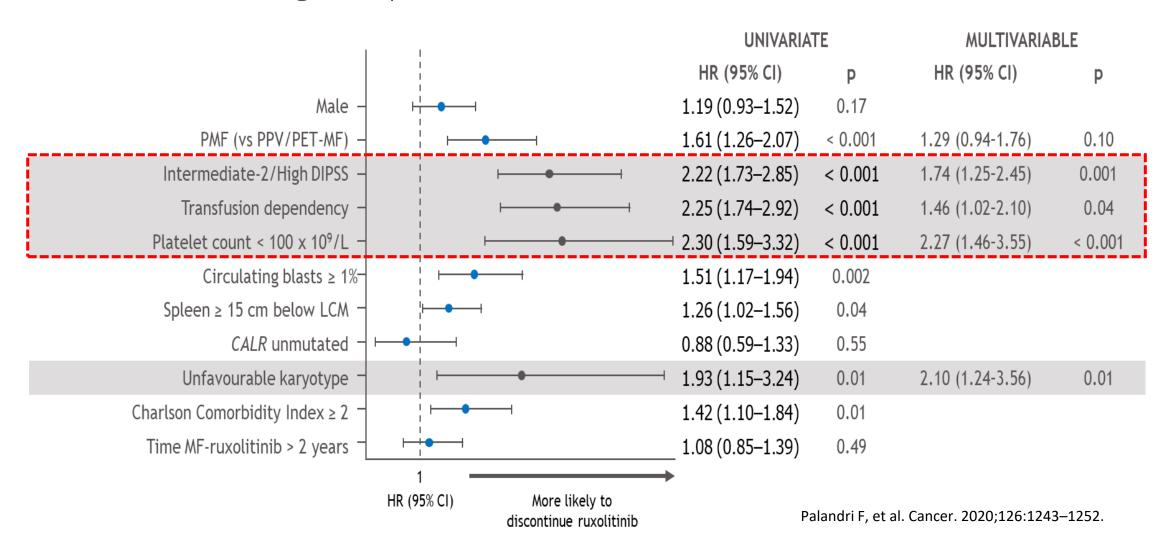
 Thrombocytopenia is more frequent in patients with low baseline platelets (≥ 50 to < 100 × 10⁹/L) despite only 5 mg BID compared to patients with higher ruxolitinb dose and higher baseline platelets

 Spleen response under ruxolitinib is dose-dependent

Preferred term	< 100 >	t count < 10 ⁹ /L 138)	Platelet ≥ 100 × (n = 2	10 ⁹ /L
	All grades	Grade 3/4	All grades	Grade 3/4
Thrombocytopenia, n (%)	101 (73.2)	75 (54.3)	1089 (52.2)	356 (17.1)

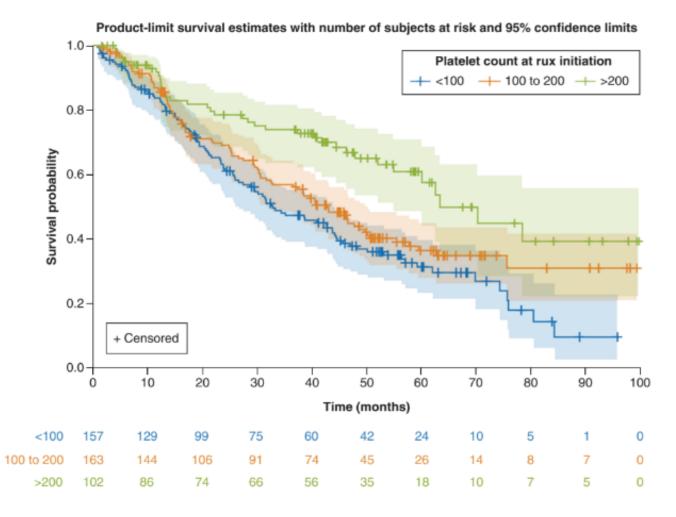
Patients with a \geq 25% and a \geq 50% decrease from baseline in spleen length

B) Anemia- Ruxolitinib Based Treatment in Myelofibrosis


Ruxolitinib in IPSS-1 patients: higher response rate and lower toxicities

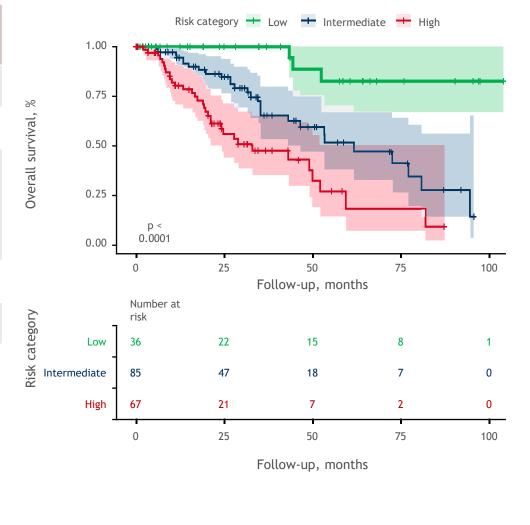
Clinical trial ^a	Spleen response at Week 24, %	Incidence of anemia Grade 3/4, %	Incidence of thrombocytopenia Grade 3/4, %	Incidence of infections, %	Discontinuation rate, %
Int-2- and High-risk patients					
COMFORT-I (n = 155)	41.9	45.0	13.0	~ 50.0	21.0
COMFORT-II (n = 146)	32.0	42.0	8.0	~ 50.0	38.0
Int-1-risk patients					
JUMP (n = 163)	63.8	24.5	11.0	40.0	19.6
ROBUST (n = 14)	50.0	N/A	N/A	N/A	N/A
Italian study (n = 70)	54.7	21.7	2.9	17.1	17.1

Verstovsek S, et al. N Engl J Med. 2012;366:799-807. Harrison C, et al. N Engl J Med. 2012;366:787-98. Al-Ali HK, et al. Haematologica. 2016;101:1065-73. Mead AJ, et al. Br J Haematol. 2015;170:29-39. Palandri F, et al. Hematol Oncol. 2018;36:285-90.

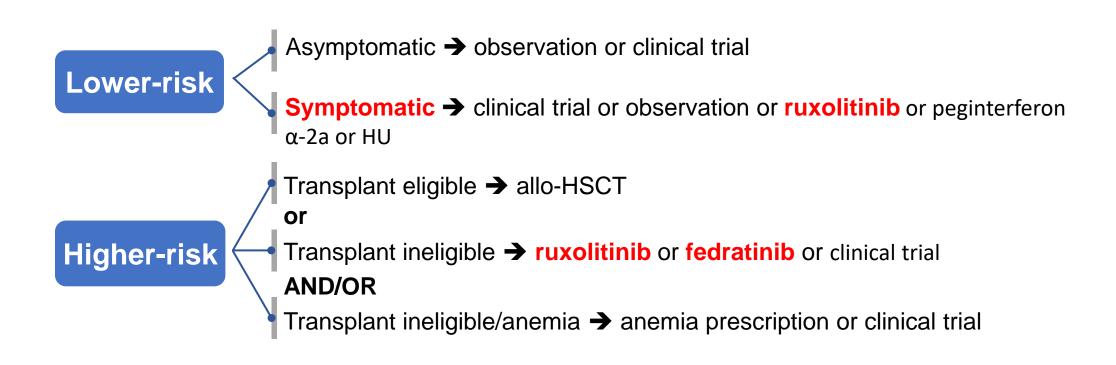

Ruxolitinib Based Treatment in Myelofibrosis

Disease stage is a predictive factor for ruxolitinib discontinuation

Survival under ruxolitinib based on baseline platelet count


 Median OS under ruxolitinib in patients with a platelet count between 100 × 10⁹/L and 200 x 10⁹/L was 42.9 months compared with 32.9 months in patients with a platelet count < 100 × 109/L

Transfusion dependency during ruxolitinib treatment is associated with worse OS

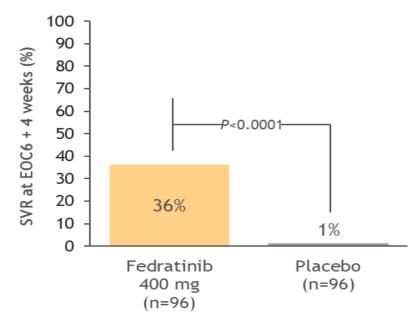

A prognostic model to predict survival after 6 months of ruxolitinib in patients with MF

Variable	Univariate, HR (95% CI); P value	Multivariate, HR (95% CI); P value
Hb decrease at 6 mo vs baseline ^a	1.02 (0.87–1.21); 0.77	-
WBC count increase to > 25 $\times 10^9/L$ at 6 mo vs baseline ^b	1.20 (0.38-3.84); 0.76	-
PLT count decrease at 6 mo vs baseline Worsening of 1 grade ^c Worsening of 2 grades ^c Worsening of ≥ 2 grades ^c at 3 mo and/or 6 mo	0.81 (0.44-1.47); 0.48 2.57 (1.25-5.25); 0.01 1.07 (0.67-1.73); 0.77	-
Circulating blast cell increase at 6 mo vs baseline	1.42 (0.85-2.37); 0.18	-
Acquisition of constitutional symptoms at 6 mo ^d	Not feasible ^e	-
Splenomegaly reduction ≤ 30% by palpation at 3 and 6 mo RBC transfusion need only at baseline RBC transfusion need at 3 and/or 6 mo RBC transfusion need at all time points (baseline, 3 mo and 6 mo) RUX dose < 20 mg BID at all time points (baseline, 3 mo and 6 mo)	2.54 (1.58-4.08); < 0.0001 0.42 (0.10-1.75); 0.23 1.80(1.05-3.09); 0.03 2.88 (1.49-5.54); 0.002 2.18 (1.31-3.63); 0.003	2.26 (1.40-3.65); 0.0009 1.66 (0.95-2.88); 0.07 2.32 (1.19-4.54); 0.02 1.79 (1.07-3.00); 0.03

Treatment in Myelofibrosis

NCCN guidelines for treatment of MF

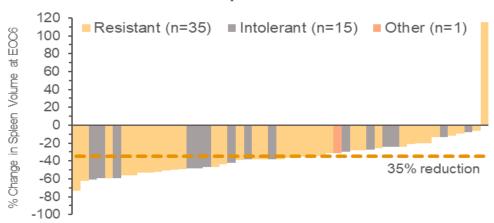
Lower-risk: MIPSS-70 \leq 3; DIPSS-Plus \leq 1; DIPSS \leq 2

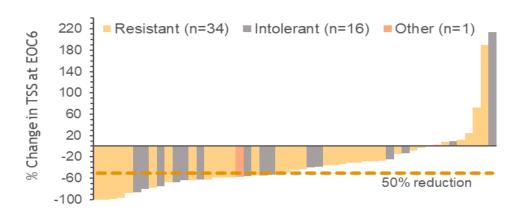

Higher-risk: MIPSS-70 ≥ 4; DIPSS-Plus > 1; DIPSS > 2

Myeloproliferative Neoplasms. www.nccn.org/professionals/physician_gls/pdf/mpn.pdf.

Fedratinib Efficacy Data

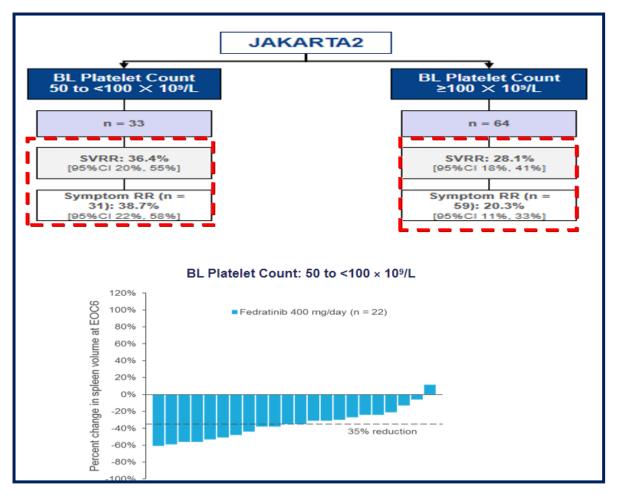
JAKARTA


Primary endpoint: ≥35% SVR from baseline at EOC6 with confirmation 4 weeks later



• ≥ 50% reductions in TSS at the EOC6 was reported for 40% (36/89) and 9% (7/81) of patients in the fedratinib 400 mg arm and placebo arm, respectively²

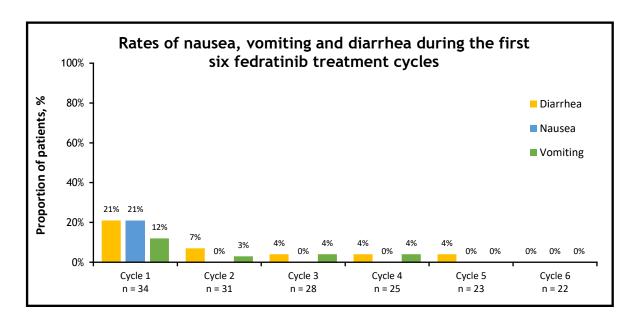
JAKARTA2


ITT Population

2. Line Fedratinib (JAKARTA 2)

Response

Management of AEs


- GI safety mitigation strategies
 - Prophylactic and symptomatic use of anti-nausea, anti-vomiting, and antidiarrheal treatments
 - Fedratinib dosing modifications
 - Administration of fedratinib with food

- Screen for Encephalopathy (Wernicke) during treatment
- Thiamine monitoring and correction

Management of GI AEs under fedratinib

- The ongoing single-arm, Phase IIIb FREEDOM study (FEDR-MF-001; NCT03755518) is evaluating the long-term safety and efficacy of second-line fedratinib in MF
- Unlike previous studies, the FREEDOM study prospectively requires mitigation strategies to manage GI events
- GI safety mitigation strategies include:
 - prophylactic and symptomatic use of antinausea, anti-vomiting and anti-diarrheal treatments
 - fedratinib dosing modifications
 - administration of fedratinib with food

Medications	N (%)
Ondansetron	22 (65%)
Loperamide	11 (32%)

Further JAK Inhibitors as 2nd line therapy in MS

Agent	JAK family	Non-JAK	Remarks
	target	target	
Momelotinib	JAK1/2	JNK1 CDk2	An option for anemic patients (second-line): Momentum Trial
Pacritinib	JAK2	FLT3	An option for thrombocytopenic patients (second-line) Approved by FDA
Fedratinib	JAK2	FLT3	Approved by FDA and EMA

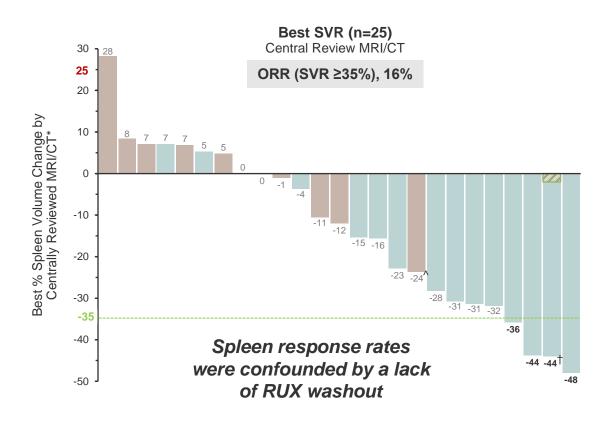
MOMENTUM: PHASE 3 RANDOMIZED STUDY OF MOMELOTINIB (MMB) VERSUS DANAZOL (DAN) IN SYMPTOMATIC AND ANEMIC MF PATIENTS PREVIOUSLY TREATED WITH A JAKI

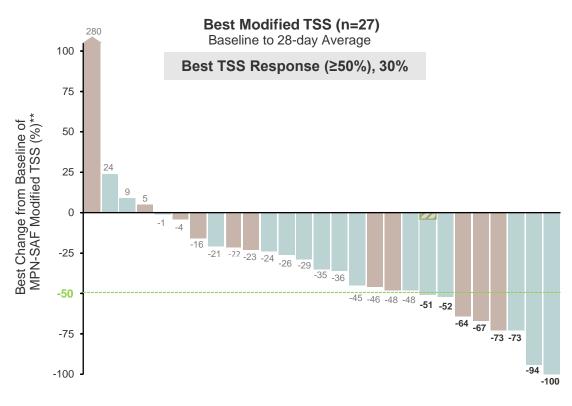
Primary endpoint: TSS response ($\geq 50\%$ reduction in mean TSS over the 28 days immediately prior to the end of week 24 compared to baseline).

Endpoint at Week 24	MMB	DAN	P-value
	(N=130)	(N=65)	
TSS response rate, n	32	6	p=0.0095 (superior)
(%)	(24.6%)	(9.2%)	
TI rate, n (%)	40	13	p=0.0064 (non-
	(30.8%)	(20.0%)	inferior)
SRR (25% reduction),	52	4	p<0.0001 (superior)
n (%)	(40.0%)	(6.2%)	
Rate of zero	46	11	p=0.0012 (superior)
transfusions to week 24	(35.4%)	(16.9%)	

Pacritinib: A therapeutic option for patients with severe thrombocytopenia

- Pacritinib has demonstrated clinical benefit at the recommended dose of 200 mg BID in patients with cytopenias in the Phase 2 dose-finding PAC203 and Phase 3 PERSIST-2 studies
- Patients with baseline platelets < 50 x 10⁹/L treated with pacritinib 200 mg BID in PERSIST-2 and PAC203 or BAT in PERSIST-2 were included in a retrospective analysis

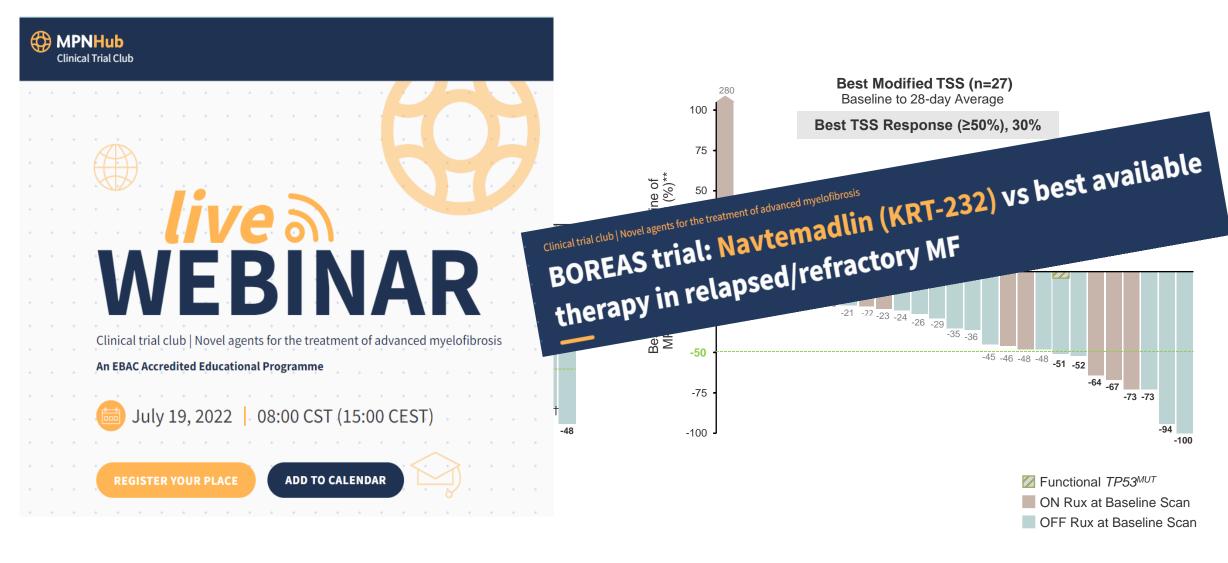

Baseline characteristics (pacritinib 200 mg BID)	N = 71
Median platelet count, 10 ⁹ /L	30
Platelet transfusion dependent, n (%)	13 (18)
Prior JAKi, n (%)	45 (63)
Some AEs (all grades)	N (%)
Some AEs (all grades) Thrombocytopenia	N (%) 23 (32)
	, , ,
Thrombocytopenia	23 (32)


Some Non-JAKi therapies as 2.nd line in MF (phase III trials)

Agent	Class	Remarks	Trial(s)	Status
KRT-232	MDM2i	Only for TP53wt, Plt ≥ 50 /mm³	KRT-232-101, Phase 2/3	open
Imetelstat	Telomerase inhibitor	Survival as Primary Endpoint, Plt ≥ 75 /mm ³	MYF3001, Phase 3	open

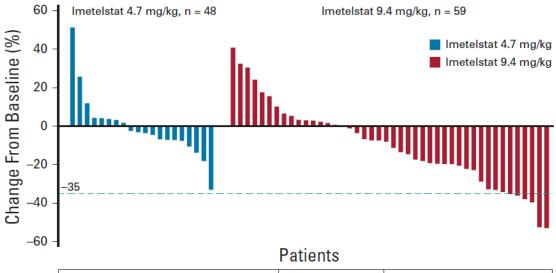
Navtemadlin (KRT232), Clinical Proof of Concept in R/R MF

240mg QD, D1-7/28-day cycle

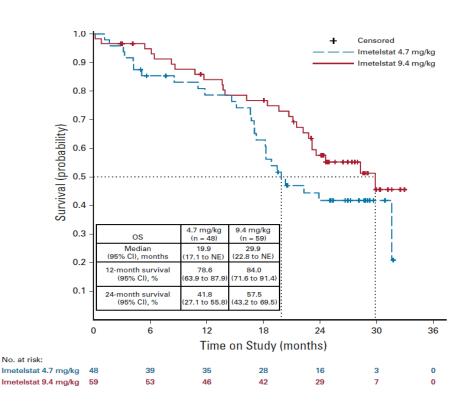


^{*}SVR Evaluable: Patients must have baseline and at least one pre-planned post-baseline spleen MRI/CT (Week -12, -24, -36). ^MRI out of window (Wk-37); †MRI out of window (Wk-38), -39% at Week-24.

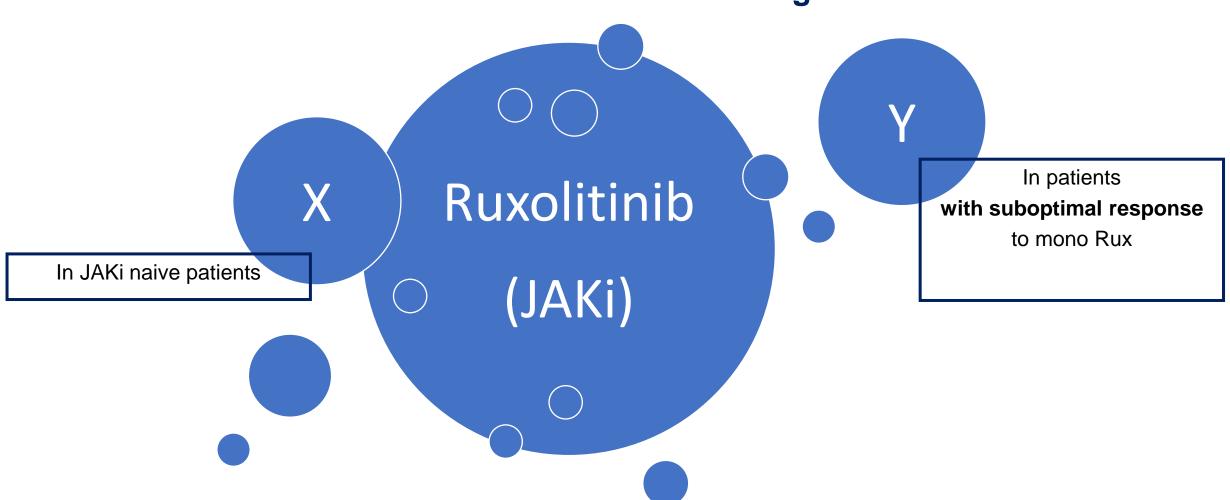
Functional TP53^{MUT}
 ON Rux at Baseline Scan
 OFF Rux at Baseline Scan


^{**}TSS Evaluable: Requires patients to have a baseline TSS and >20-days within a 28-day period reported for post-baseline assessments. Best Modified TSS: Best change from baseline to trailing 28-day average at end of Week -4, -8, -12, -16, -20, -24, etc. Modified MPN-SAF Total Symptom Score (TSS) includes early satiety, abdominal discomfort, night sweats, itching, bone pain, and rib pain.

Navtemadlin (KRT232), Clinical Proof of Concept in R/R MF

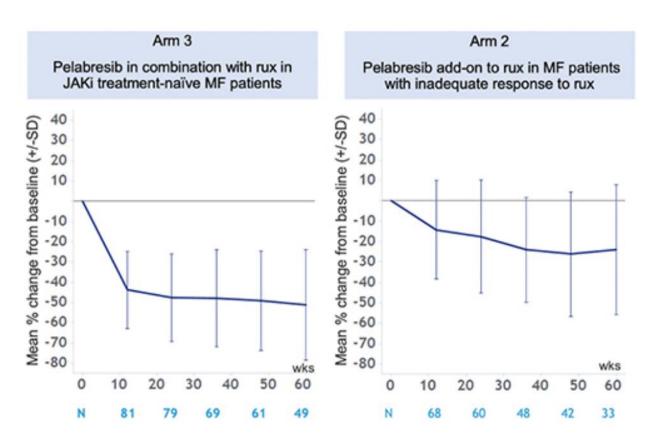

Imetelstat in relapsed or refractory MF

Waterfall plot of maximum percent change in SVR at Week 24 in patients with MF treated with imetelstat


Spleen Response	4.7 mg/kg (n = 48)	9.4 mg/kg (n = 59)
≥ 10% SVR at week 24, No. (%)	4 (8.3)	22 (37.3)
≥ 20% SVR at week 24, No. (%)	1 (2.1)	13 (22)
≥ 35% SVR at week 24, No. (%)	0	6 (10.2)

Kaplan-Meier ITT analysis of OS. All patients on study by random assignment arm

Future Perspectives


Combination or Add-on Strategies

Combination/Add-on Therapy Trials 2022

			Combi	nation/		
JAKi	2nd Agent	Class	Add	d-on	Remarks	Trial(s)
			Combi	Add-on		
Rux	KRT-232	MDM2i (Murine Double Minute 2)	-	yes	Only for TP53wt, Plt ≥ 100 /mm ³	KRT-232-109, Phase 1b/2
Rux	CPI-0610 (PELABRESIB)	BETi (Bromodomain and Extraterminal Domain)	yes		Platelet count ≥ 100 /mm ³	MANIFEST-2, Phase 3
Rux or Fed	Luspatercept	TGF-beta protein ligand	-	yes	Patients who require red blood cell transfusions	INDEPENDENCE, Phase 3
Rux	Parsaclisib	ΡΙ3Κδί	yes	yes	Platelet count ≥ 50 /mm ³	Limber-304 und 313, Phase 3
Rux	Navitoclax	BCL-2i	yes	yes	Platelet count ≥ 100 / mm ³	Transform, Phase 3

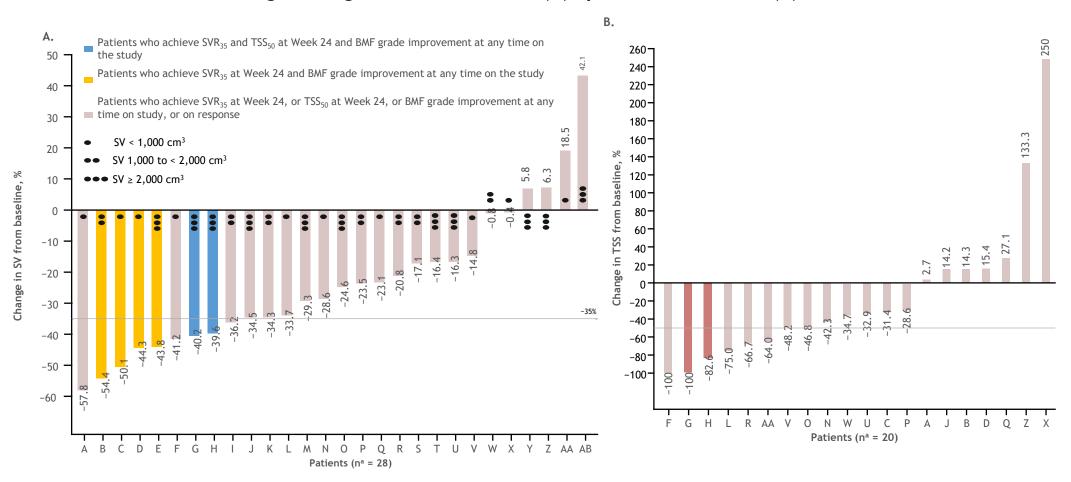
Pelabresib (CPI-0610) has shown single-agent and combination activity in MFSVR35

Wk 24	JAKi naive	Add-on to ruxolitinib
Spleen response (SVR35)	68%	20%
TSS50	56%	37%
Mean Hb increase (1.5 g/dl) over 12 weeks	24%	
Achievement of TI ≥ 12 weeks	_	16%

Luspatercept and sotatercept have shown potential for anemia responses in MF

Luspatercept

	Cohort 1 NTD, no Rux (n = 20)	Cohort 2 NTD + Rux (n = 14)	Cohort 3A TD, no Rux (n = 21)	Cohort 3B TD + Rux (n = 19)
Hb increase ≥ 1.5 g/dL at every assessment	2 (10)	3 (21)	-	_
Mean Hb increase of ≥ 1.5 g/dL	3 (15)	8 (57)	-	_
Achievement of RBC-TI ≥ 12 wks	_	-	2 (10)	6 (32)
≥ 50% reduction in RBC transfusion burden	-	-	8 (38)	10 (53)


Sotatercept

	Combination with ruxolitinib	Single agent
Responses, n/N (%)	6/19 (32)	8/27 (30)
Median time to response, days	14	19
Median duration of response, months	18.2	23.3

Clinical Trial ID	Trial Name	Study Design	Treatment Details
NCT04717414	INDEPENDENCE	Phase 3 Randomized, placebo-controlled	Combination with JAKi

Navitoclax + ruxolitinib for patients with progression or suboptimal response on ruxolitinb

Percentage change from baseline in (A) spleen volume and (B) TSS at Week 24

Conclusions to MF

The influence of disease stage & duration on quality of response to ruxolitinib

- Spleen/symptom responses are lower if
 - Time interval between MF diagnosis and start of ruxolitinib > 2 years
 - Larger splenomegaly/higher total symptom score
 - Transfusion dependency/lower PLT count
 - IPSS Int-2/High risk

The influence of ruxolitinib dose

- Early MF patients may tolerate a higher ruxolitinib dose
- Patients starting with higher doses have a higher rate of spleen response
- Use of lower ruxolitinib doses (< 10mg BID) may also result in reduced efficacy

Novel treatments (mono and combination) could be new options for unmet medical needs and are being tested in clinical trials

Thank you very much

haifa.al-ali@uk-halle.de

